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1.0 Overview 
 
ACT-R (Adaptive Control of Thought – Rational) is a modular architecture that 
allows one to develop and integrate perceptual, motor, and more deliberative 
components. Because these components can be identified with specific brain 
areas, neural imaging can guide the development of the architecture. Its hybrid 
architecture integrates reflexive subsymbolic computations with deliberative 
symbolic computations. Its learning mechanisms reinforce this symbolic-
subsymbolic duality in domains such as learning from instruction. ACT-R can 
take instruction and use it to guide its behavior symbolically.  While initial 
instruction interpretation is very slow, it can compile new rules to efficiently apply 
this knowledge (symbolic learning). However, it can also learn how well these 
rules work in different contexts (subsymbolic learning) and how to select most 
likely paths.  The goal of the project was to perform a proof of potential by 
applying ACT-R to a challenging learning task that we believe is just tractable. 
This task involved learning what is traditionally taught as the solution of linear 
equations in American high schools.  
This involved: 
 
1. Giving the system the abilities that a prepared student entering Algebra 1 
should have.  These include the abilities to perform basic arithmetic and to parse 
arithmetic expressions. 
2. Giving the system a representation of the instructions that appear in a 
standard algebra textbook. 
3. Having the system learn by feedback on its solution efforts how to solve the 
class of problems that appear in the textbook. 
 
 While it would be no challenge to build a system that solved linear equations or 
perhaps even to build a system that learned to do problems from a full 
specification of what it has to do, it would be a significant accomplishment to 
learn this on the same terms that people do. Learning algebra corresponds to an 
interesting phylogenetic transition. While there are now clever studies that have 
taught higher apes considerable arithmetic and perceptual skills (significant 
fractions of 1 above), algebra has a level of abstraction that makes it a uniquely 
human competence. So, while it is hardly the height of human intelligence, 
algebra is one of the more tractable reflections of human intelligence. As 
evidence that the ACT-R model was acquiring the competence in human terms 
we performed a functional MRI imaging study of the acquisition of this skill and 
tested predictions of the model for this imaging data as well as the behavioral 
data. 
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2.0 Description of Work 
 
In the first year we created a computer tutor that covers the full curriculum on 
linear expressions and their solutions as contained in the first four chapters of the 
classic algebra textbook of Foerster. We also developed an isomorphic 
representation of this system in which equations are represented by data-flow 
graphs. It serves as a basis for teaching high-school algebra to college students 
in a form they do not recognize and have to learn over again. Figure 1 shows the 
representation of the same equation in the two systems.  Both children and 
adults went through subsets of the curriculum within their respective systems. 
Children generally did somewhat worse than adults, but their errors were largely 
a matter of slips. If a student makes a slip and produces a wrong result it can be 
difficult to diagnose where the error was made and most of the extra time and 
errors for children involved recovery attempts from these initial slips. It turns out 
there is one measure on which children and adults do not differ. This is the time 
to perform a transformation of the equation. Because of the design of the 
interfaces, the number of motor actions to perform a transformation does not vary 
with form of the algebraic representation (linear or data flow). While the number 
of transformations will vary with the complexity of an equation, the time to 
perform a single transformation is also constant. Figure 2 shows the time per 
transformation across problems in the curriculum and the predictions of an ACT-
R model for this task. The most striking aspect of the data comes from the large 
spikes in the times where new instructions are being introduced.  This reflects the 
cost of the initial interpretation of these instructions.  The ACT-R model parsed 
the instruction delivered by the tutor and encoded it in a declarative form. The 
knowledge is encoded in the form of operators that the agent can perform, the 
preconditions of these operators, and their post conditions. Besides encoding 
mathematical knowledge, this operator encoding has been used to model 
knowledge in domains as widely varied as simple dual-task experiments 
(Anderson et al., 2005) and operating a flight management system on a Boeing 
777 (Taatgen et al., 2006). An example of such an operator might be how to 
distribute multiplication over addition in an algebraic expression, what the 

(b) Data-Flow  
Representation 
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preconditions are for this operation, and what the consequences are. Encoding of 
mathematical knowledge into a rich set of operators for a domain provides the 
student with the ability to reason about a wide range of representations of 
mathematical relationships and their implications.  However, knowledge in this 
highly flexible form is expensive to use in terms of working memory demands. As 
the student experiences repeated patterns of this knowledge use, new 
procedures develop for efficiently using this knowledge without retrieval and 
application of the original declarative encoding of the instructions. 
 
 

 
 
As is apparent from Figure 2, the theory does more than just predict these 
general behavioral patterns; it predicts the actual observed data. Still, such 
behavioral data are too coarse-brained to substantiate fully the detailed modeling 
assumptions. Therefore, in the second year we turned to fMRI brain imaging to 
obtain converging evidence about the specific operations in the theory.  The 
system works well in an fMRI scanner and we ran college students through the 
curriculum.  Figure 3 shows the results from four important brain regions. It 
shows the results for simple and complex equations early and late in learning. 
The length of the BOLD curves reflects the duration of the equation solving while 
the area under the curves reflect the amount of energy being expended in that 
region of the brain. Each of the four regions shows a distinct pattern: 
 
(a) The motor region reflects the number of actions to execute the operation, 
which is greater for more complex equations but which does not change with 
practice. Therefore, there is greater area under the curve in the case of the more 
complex equations but no different between early versus late in learning. 
 
(b) The parietal region reflects the amount of time spent in encoding operations 
to represent the equation and its transformations. The area under these curves is 
greater for more complex equations and reduces with practice because certain 
encoding operations become skipped. 
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(c) The prefrontal region reflects retrieval of instructions and arithmetic facts. It 
shows a similar learning pattern to the parietal except that the effect of practice is 
even more dramatic because all instruction retrieval has dropped out. 
 
(d) The anterior cingulate reflects the decision making being made at different 
choice points in the solution of the equations. This largely does not change with 
practice. However, it turns out that there is actually an increase late in practice 
with complex equations. As part of the learning, students learn more complex 
transformations that complicate the decisions about the signs of terms.  
 
Therefore, reflecting their greater knowledge they actually have to make more 
decisions later. The solid lines in the figures represent the predictions of the 
ACT-R model and the dotted lines connect the actual data points. It can be seen 
that the correspondence is pretty close. 
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3.0 Evaluation and Discussion 
 
As Figures 2 & 3 display, the model did a good job in achieving a 
correspondence with the detailed data obtained from students. Probably the two 
outstanding issues about the approach are whether the models detailed 
assumptions are correct about instruction representation and whether the 
general approach would extend to other domains. With respect to the first 
question the best way to answer this would be to perform manipulations of the 
instructional input and see what the results were. We were able to perform such 
a study in the second year of the proposal but we did not have the time to extend 
the model to this data. We are doing this as part of another project funded by 
DARPA. With respect to the second question we have been looking at applying 
the same methodology operating a flight management system on a Boeing 777 
as part of another grant. 
 

4.0 Technology 
 
The experimental system and ACT-R model as developed for this project is 
available at the following web site: 
 
http://act-r.psy.cmu.edu/models/  
  
 

5.0 Publication 
 
The forthcoming book includes a major report on this research: 
Anderson, J. R. (2007) How Can the Human Mind Occur in the Physical 
Universe? New York: Oxford University Press. 
 




